

RETURN TO
The Albert F. Simpson Historical Research Center Maxwell AFB, AL 36112

NNGASSIFIED.

Future activity on this project should be carried on at the minimum level necessary to record, summarizo, and evaluate the data recelved on future reports and to complote the specialized investigations now in progress. When and if a sufficient number of incidents are solved to indicate that these sightings do not represent a threat to the security of the nation, the assignment of special project status to the activity could be terminated. Future investigations of reports would then be handied on a routine basis like any othor intelligence work.

Reporting agencies should be impressed with the necessity for getting more factual evidence on sightires, such as photozraphs, physical evidence, radar sightings, and date on size and shape. Personnel sighting such objects should engage the assistance of others, when possible, to get more definice dats. For example, military pilots should notify neishboring bases by radio of the presence and direction of flight of an unidentified object so triat other observers, in flight or on the ground, could assist in its identification。

CONCLUSIONS

No definite and conclusive evidence is yet available that would prove or disprove the existence of these unidentified objects as real aireraft of unknown and uncanventional configuration. It is unlikely that positive proof of their existence will be obtained without xamination of the remains of crashed objects. Proof of non-existence is equally impossible to obtain unless a reasonable and convincing explanation is determined for each incident.

Many sightings by qualified and apparently rellable witnesses have been reported. However, each incident has unsatisfactory features, such as shortness of time under observation, distance from observer, vagueness of description or photographs, inconsistencies between individual observers, and lack of descriptive data, that prevents definite conclusions being drawn. Explanations, of some of the indidents revealed the existence of simple and easily understanable causes, so that there is the possibility that enough incidents can be solved to eliminate or ereatiy reduce the mystery assooiated with these occurrences.

Evaluation of reports of unidentified objects is a necessary activity of military intelifence agencies. Such sightings are inevitable, and under wartime conditions rapid and convincing solutions of such occurrences are necessary to maintain morale of military and civilian personnel. In this respect, it is considered that the establishment of procedures and training of personnel is in itself worth the effort expended on this project.

UNCLASSIFIED

DISCUSSION

Organization of Data on Incidents

Approximat ely 243 domestic incidents have been reviewed, at the present time. In each incident, the obsorvors have been interrogated by investigators and the results have been analyzed by tochnical personnel.

Condensed summaries have beon prepared for the list of incidents in sufficiont quantity to make the basic information easily avallable to individuals or asencies having an authority or in interest in the project. (See Appendix A).

A detailed check list, compiled by technical personnel, indicating the basic loments of information, necessary for analysis of the individual incidmt, has been propared and distributed to appropriate government agencies.

In order to identify ordinary and conventional objects, that have probably been included in the list of reported incidents, graphical methods have been applied, so as to present the basic data in such form that overali facts, implicit in the grouped data, will be made apparent. (See Appendix B).

The prepared graphical data includes:
(a) Charts concerning unidenticied aerial objects, to indicate:

1. Type of object observed
2. Vicinity in which particular type of objoct was observed
3. Direction of flight
(b) Locations of guided missiles, research and related conters
(c) Locations of airlinos, airfields, both military and commertial.
(d) Locations of radio beacon stations
(e) Known or projected radar stations from which reports and assistance may be derived
(f) Meteorological stations from which balloon release data, radiosonde or theodolite readings may be obtained -
(g) Past, current, and projected celestial phenomena
(h) Fiight patrs of migratory birds

Psychological Anslysis

A psychological analysis of the roported data is being prepared by Aero-kodical Laboratory, A.M.C., for the purpose of dotermining those incidents that are probably based upon errovs of the human mind and senses. A preliminary verbal report from the professional psychologists indicates that a considerabie number of incidents can be explained as ordinary occurrences that have been misrepresented, as the result of human errors.

The condition of "vertifo", well known to airpl ane pilots, ss well as others, is considered to be important factor in some of the reported incidents. "Vertigo" is dofined from a medical viewpoint by Webster's Dictionary as "Dizziness or swimming of the head; a disturbance in which objects, though stationary, eppear to move in various directions, and the person affected inds it difficult to maintain an erect posture. It may result from changes in the blood supply of the brain or from disease of the blood, eyes, ears, stomach, or other organs."

Accelerations, resulting fromarplane maneuvars, togethe 由ith space-oriantation difficulties at night in an alrplane, due to the lack of or strangeness of visual references, makes a condition of "vertigo" more likely to appear in personnel in night-flying alreraft than under more normal conditions. The fact that both pilot and co-pilot may raport the same impressions is not complete proof of accuracy, since both individuals have experienced the same maneuvers and accelorations and have viewed the same lights and surroundings under the same optical conditions (including the same windshield and canopy glass).

A more complete dicussion of psychological factors is expected to be provided in a euture status report. Quite probably, some of the incidents of fast, highly maneuvering "lights", reported by both air and ground observers, are the eesult of "vertigo" or optical illusions.

Strictiy speaking, no engineering analysis of an incident should be initiated until the psychological analysis has been made and has shown thet psychological factors cannot explain the observation.

Asencies, Outside A1r Matoriel Command, Supplying Information and Analysis

Specialist services, supplementary to those of Air Materiol Command technical offices, are being provided by a number of agenofes.

The Air Weather Service has reviewed the list of inciderts and has provided the information that twenty-four of them coincide, both with respect to location and time, with the release of weather balloons.

UNCLASSIFIED

The Ohio State University has contracted with Air Materiel Command to supply astronomical serves in an effort to identify meteors, planetoids and associated phenomena. Professor Hynek. Ohio State University Astro-Physicist and head of the University Observatory has undertaken to roview the incident summary sheets. While this work has not yet been completed, Professor Hynok has reported verbally that he is satisfied that a number of the reported observations represent astro-physical phenomena.

Members of the Scientific Advisony Board to the Chief of Staff, USAF, who have provided consultant servicos to Project "Sign", include Dr. Irving Langmuir, Chief, General Electrio Research and Dr. G. E. Valley of MIT.

A preliminary type of interview has been hold between Dr. Langmuin and personnel of Profect "Sign" during early stages of the project. It is intended to consult further with Dr. Langmuin In an effort to supplement present technical of forts toward idontifying the reported objects.

Dr. G. B. Valley has displayed an active interest in profect "Sign", to the extent of reviewing the reported incidents and writing on overall type of analysis in which he groups the various objects and then analyzes each group from the standpoint of sciontific feasibility. This analysis is provided as Appendix (C) to this report.

Inasmuch as various surmises have been advanced that some of the reported observations may have represented "space ships" or satellite vehicles, a special study has beon initiated with the Rand Corporation, undor the Rand Project, to provide an analysis from this standpoint and also to provide fundamental information, pertaining to the basic desion and performance characteristics that mipht distinguish a possible "space ship."

As a preliminary undertaking, the Rand Project has submitted a study by Dr. Lipp in which the possibility is explored of any plantet in the known universe being in a physical and cultural position to allow the development and use of the "space ship". This study has been prepared in the form of a report that is presented as Appendix (D).

The Wathan Bureau Libeary of the Department of Conmerce has supplied information on "ball lightning". This was requested becasse of the belief by some persons that some of the oiservations may have ropresented "ball lightning". It appears that the subjoct of "ball lightning" occupies an undetermined status and authoritios are not at all convinced that such a phenomena actually exists.

The Federal Bureau of Investigation has assisted Project "Sign" in a number of instances, both by investigations of the character and reliability of witnesses of incidents and by providing other investigative services.

Considerations Affecting Anslysis and Evaluation

OPERATI ONAL

Inasmuch as there is a distinct possibility that a number of the reported incidents represent domestic projects of a secur-dty-classified nature, the list of incidents has been submitted to higher cholons for reviow.

Since weather balloons, blimps, airplanes of unusual size or configuration, and guided missiles test vehicles may represent some of the observations, action has been taken to obtain information, concorning schedules and flights of such oraft from the appropriste agancies.

In connection with the psychological studies being performed, extensive investigations, concerning the charactor and reliability of the reporting witnesses have been mado.

TECHNICAL

A certain proportion of incidents appear to be peal aircraft, though of unconventional configuration. In order to investigate the credibility of their existence the following factors must be considered in any technical analysis.

Aireraft

Method of Support (11ft)
Wings
Fuselage Lift (Wingless)
Rotor
Vortical Jet
Magnus Effect (rotating cylinder, cone or sphere, subjected to relative translational air velocity)
Aorostatic (lighter-than-air oraft)
Method of Propulsion (Thrust)
Propeller-reciprocating engine combination
Jet, rocket, ramjet (utilizing conventional fuels and oxidants or possibly atomic energy)
Marodynamic (Katzmayer Effect - oscilluting airfoils

- developing natgative drag (thrust)

If an atomic energy powered ongine were available, a small mass flow at arge velocity could accomplish the required ifft and propulsive forces and the large energy expenditure would be of small importance.

However, the hoat exchange requi ements for the atomicpowered engine appear to demand physical dimensions of inordinate size that presently would pzepade the use of this powerplant for alreraft.

UNCLASSIFIED

In addition, manned aircraft would require an excesalve percent woight of shielding for human protgotion, unless configurstions of extremely large size were used. If unshielded craft were in operation, existd ng detection means would probably have indicated their presence.

Metallurgical limitations to date, limit the rate of converting the heat onergy of the atomic source to useful propulsive work to such an ineffective order of magnitude thet such a power system is quite unlikely from the standpoint of size and woight.

Stabillty
Aerodynamic (both static and dynamic through the use of aspodynamic surfaces and woight distribution).

Servo-mechanism (gyro or accelerometer - servomotor system)
Control
Movable surfaces in alrflow or jot
Jet (fiow control or swiveling types).
Possible Spaceships
World knowledge, techniques, and resources are considered to be presentiy adequate for the development of spaceships.

Distinguishing design and porformance parameters are oxpected to be supplied as a special study by the Rand Project.

Probable Natural Phenomena
Astrophysical (meteors, comets, planotolds, etc.) Astrophysical analysis is expected to be performed by personnel of Ohio State University Research Foundation.

Electromagnetic (ball lishtning, St. Elmo's Fire, Phosphorescence, corona, etc.).

Ordnance Items

While this analysis considers the raported objects largely from the standpoint of alroraft with requirements for speed and substantial duration of flight and rance, it is entirely possible that the configurations reported in small sizes could serve as very useful ordnance items to take the place of (or supplement) such short-range weapons of ground (infantry) warfare as the trench mortar, hand grenade, ete. The small saucer-like, spinning,

UNCLASSIFIED

disks, reportediy undor development by the USSR with the aid of German Scientists, ha ving explosive edges and launched by a compressed air catapult, (perhaps in the manner of clay pigoons projected by trap mechanism) could possibly be ordnance articles. Also, such devices could beiused by aircraft in attacking onemy airplane formations. In such cases, only a modest speed, short range, and limited flight duration would be required, himce the arodynamic officiency of the design would not be of very much importance.

Insufficient Information for Even Possible or Hypothetical Type Determination'.

Diseredited Reports
Erroneous (See Discussion, Psycholozical Errors)

False

Technical Analysis of Vgrious Configurations

The extreme lack of data for each of the incidents that have been reported makes it presontly impossible to accurately identify any of the reported craft with respect to design and performanco. Technical analysis must be made by considoring possibilities and probabilities, which are expected to be proved or disproved only when complete data or physical specimens of aircraft (crash) are available. Undientified aerial objects appear to be grouped as follows:
(1) Flying disks (saucers)
(2) Torpedo or Cigar Shaped Bodies (no wings or fins visible In flight)
(3) Spherical or Balloon-Shape Objects (capable of hovenfing desconding, ascending or travelling at high speod).
(4) Balls of light (no apparent physical form attached). Capable of maneuvering, climbing, and travelling at high speed.

The first three groups of objects are capable of flight through the atmosphere by mans of aerodynamic and propulsion designs (to produce the required lift and thrust) that are readily conceivable by seroanutical designers. The stabilizing and control features that would be required, while more obscure, could concelvably be provided. The question arises, however, as to whether these conflgurations would develop much speed and allow a sufficient duration of flight and adequate range to be of practical use as aircraft.

Flying Disks

The disk or circular planform has not been used in ropresentative aircraft, eithor military or civilian, for the reason that the induced drag, as detarmined by the Prandtl theory of lift, would
apparently be excessively high, since the aspect ratio of a circular planform is only 1.27. Extension of the Prandtl thoory, has also shown that the maximum possible lift coefficient to be expected from such low aspoct ratio planforms should also be poor. In addition, the relatively large mean aerodynamic chord would present difficult design problems, to achieve static longitudinal stability for airfoll sections having a significent conterof -pressure travel, or for airfoll sections of so-called "stable" type, when equipped with allerons at the trailing edge.

In the very low aspect ratio range, the Prandtl theory is probably very inaccurate. Wind-tunnel tests of very low aspect ratio airfoils indicate much less induced drag increase than expectad from theory and also demonstrate very high maximum iff coofficiont accompanied by oxtremoly high stalling angles. However, in general the induced drag of aery low aspect ratio wings is much larger than the induced drag of conventional aircraft wings, a condition which would adversely affect all performance values in flight conditions which require medium and high iff coefficients. Thus, performance in climb, at altitude, and for long-range conditions would be relatively poor, although high speed would be little affected.

Notwithstanding the predicted aerodynamic disadventages of circular planform wings, quite a number of experimertel efforts have been made to use this configuration - and not all of them by persons 1 gnorant of aerodynamic fundamentals. Experimental wind-tunnel work at the NACA (1933) showed both maximum iff coefficients and stall characteristics much more favorable than could be anticipated.

The problem of static longitudinal stability could possibly, be solved by the use of a stable alrfoil section of the reflexed tralling edge type with wing tip allerons (perhaps floating) aerodynamically independent of the wing.

At supersonic speeds, where the induced drag is small, the circular planform offers the probability of roduced drag, characteristic of low aspect ratio alrfoils in the supersonic range. Also the circular planform presents a swept-back loading odge (of variable sweep along the span), which should result in a reduced effective Mach Number, with attendant reduced drag for a certain supersonic speed range.

No definite information has been received on the method of propulsion used on flying disks which have been sighted. However, because of distance factors involved in the sightings it is quite possible that oither propellers or jet propulsion could have been omployed without bolng noted by the obsorver.

Flying Fuselages (Tarpedo or Cigar-Shaped Body)

While the oigar or torpedo-shaped body represents on officient form for the fuselage of an alrplane or the body of a guided missile,

UNCI_ASSIFIED

In nolther case has it been used as a primary lift-producinz surface. However, an extension of the Prandtl theory of lift indioates that a fuselage of the dimensions reported by the Eastern Alrlines pilots Whited and Chiles in the Montgomery, Alamama, inoldent could support a load comparable to the walght of an alraraft of this size at flying spoeds in the subsonic range. The Prandtl theory probably gives very conservative values of maximum ifft for bodies of this shape. German experience indicates that the maximum lift may be twice as high as that given by the theory.

Although the craft sighted by Whited and Chiles was reported to be without wings and fins, it is possible that it could have been equipped with extensible wings for take-off and landing, contsined within the fuselaze in cruising flight.

This type of alreraft could also be partially supported in the take-off and landing condition by the vertical component of the jet thrust, if the landing and take-off took place with the fuselage axis, or the jet stream direction in a vertical or nearly vertical altitude. The further possibility that an extensible rotor, concealed within the fuselage, could have been used, would provide another method for landing and take-off that would allow wingless flight at very high spoed. Such a dosion oould result In a relatively large duration of flight and corresponding range.

While no stabilizing fins were apparent on the "flying fuselage" reported by Whited and Chilos, it is possible that vanes within the jet, operated by a gyro-servo system could have provided static stajility, longitudinally, directionally and laterally. The same vanes could also have been used for accomplishing static balance or trim, as well as control for maneuverinf.

The above discussion regarding woight, controllebility, stability, etc. is not intended to represent deductions regarding the exact nature of the torpedo or ofgar-shaped alrcraft which were sighted by the airline pilots, Whited and Chilas, end others. They are merely statements of possibilities, which are intended to show that such an alroraft could support and control itself by aerodynamic means.

The propulsive system of this type of vehicle would appear to be a jet or rocket engine. The specific fuel consumption of engines to this type would be rather high. This, coupled with the fact that aerodynamic lift on such a body would be accompanied by high drag, places a serious limitation on the range of this aircraft for any particular gross weight. If this type of unidentified aerial object has extromely long ranje, it is probable that the method of propulsion is one which is far in advance of presently known engines.

Round Objects (Sphericale and Balloon-Shaped Objects)

Sphorical or ballooneshaped objects, are not usually considered as officient alreraft. Not only would the drag of such bodies be high, but the energy expenditure that would be required to develop ilft by aerodynamic means would be excessive. The only conceivable

Q MCLASSIFIED

means of producing lift for such a body, other than by aarostatio (simple buoyancy) means, would be by rotation of the sphere with translational motion relative to the alr; or by discharging a stream of air vertically downivard. Aerodynamic flight could be accomplished with a rotating sphere, provided the dotalled desion problems, including stability and control ware worked out. The methods, using a blown system or fots, would require relatively greator amounts of onorgy and while they could be used for flights of very short range and duration, would not ordinarlly be considered as practical by eeronautical desifners.

The obvious explanation for most of the spherical shaped objects is that they are meteorological or similar type balloons. This, however, does not explain reports that they travel at high speed or maneuver rapidly. It is possible that the movement of the objects wes some kind of an optical illusion, or that movement for a brief period due to a gas leak in the balloon was exaggerated by observers.

Balls of Light

No reasonable hypothesis of the true nature of balls of light, such as that reported by Lt. Gornan at Fargo, N. Dakota, has been developed that explains the behavior reported. The most reasonable explanation is that the lights were suspended from balloons, or other means of support, not visible at night, and the violent maneuvers reported are due to illusion.

Possibility of Scientific Dovelopments in Advance of Knowledge in this Country.

Consideration has been given to the possibility that these unidentified alroraft represent scientific developments beyond the level of knowledge attained in this country. Since this is probably the most advanced of the industrial nations on the earth, and our interest in scientific developments throughout the world is very active, it wbuld be necessary for any other country to conduct research and development work in exteeme socrocy for any such project to have reached such an advanced state of dovelopment without a hint of its existence becoming known here. The only nation on earth with extensive technical resources which has such rigid security, is the U.S.S.R. An objective ovaluation of the ability of the Soviets to produce tochnical development so far In advance of the rest of the world results in the conclusion that the possibility is extromely remote. Most of the successful Soviet aeronautical dovelopments have been ppoduced by utilizing experience of other nations, some of them being very close copies, so it is very unlikely that they have devaloped the propulsion and controldevices necessary to make the se objects perform as described.

Another possibility is that these aerial objocts are visitors from another planet. Little is known of the probabilities of life on other planets, so there is no basis on which to judge the possibility that civilizations far in advare of ours exist outside he earth. The commentary on this possibility by Dr. James Lipp of the Rand Project in Appendix D, indicates that this solution of the mystery connected with the sighting of unidentified flying

APPENDIX "A"

Distribution of Incident Sumaries:

Air Materiol Command
Aero Medical Laboratory (MCREXD)
Weather Liaison (MCLAWS)
Research and Dovelopment (MCREOS)
Eloctronic Plans (MCREEP)
Technical Intelligence, Technical Sections
(MCI)

Other Agencies
Directorate of Intelligence, Hq., USAF (AFOIR) Office of Naval Intellisence (ONI) Cambridge Pisld Station, Cambridge, Mass. Air feather Services, Andrews AFB, Washington, D. C.
Ohio State University, Dr. Hynok
Rand Inc., Rand Projoct (USAF)
Scientific Advisory Board (USAF) Dr. Valley

Qnclassiried
"APPENDIX B"

UNCLASSIFIED

- 111 Shapes Incidents 1-233
 Intensity of Sightings - By Date

UNCLASSIFIED

```
Disc Shapes - Incidents - 1-233
Intensity of Sightings - By Date
```


UNCLASSIFIED

Ball Shape Incidents 1-233
Intensity of Sightings by Da e

UNCLASSIFIED

Undeternined shapes - Incidents 1-233 , Intensity of Sightings - By Date

NOTE

When drawings, specifications, and other data prepared by the War Department are furnished to manufacturers and others for use in the manufacture or purchase of supplies, or for any other purpose, the Government assumes no responsibility nor obligation whatever; and the furnishing of said data by the War Department is not to be regarded by implication or otherwise, or in any manner licensing the holder, or conveying any rights or permission to manufacture, use, or sell any patented inventions that may in any way be related thereto.

The information furnished herewith is made available for study upon the understanding that the Government's proprietary interests in and relating thereto shall not be impaired. It is desired that the Patent \& Royalties Section, Office of the Judge Advocate, Air Materiel Command, Wright Field, Dayton, Ohio, be promptly notified of any apparent conflict between the Government's proprietary interests and those of others.

Espionage Act

Notice: This document contains information affecting the national defense of the United States within the meaning the Espionage Act (U. S. C. 50:31, 32). The transmission of this document or the revelation of its contents in any manner to an unauthorized person is prohibited by law. (AR 380-5, paragraph 17 b .)
"The above Espionage Notice can be disregarded unless this document is plainly marked with a security classification as "Restricted," "Confidential," "Secret," or "Top Secret."

The L ${ }^{1}$. S. Goverrment is absolved from any litigation which may ensue from the contractor's infringing on the foreign patent rights which may be involved.

APPENDIX "C"

Seme Considerations Affecting the Interpretation of Reports of Unidenticied Flying objects
 By
 G. R. Valley, Nember Scientific Advisory Board, office of the Chief of Staff, United States Alr Force

The writer has studied summary abstracts and comments pertaining to unidentified flying objects, which were forwarded by Alr Force Intelli gence. These remarks are divided into three main parts: the first part is a short' summary of the reports; the second part consists of a ceneral survey of various possibilities of accounting for the reports; the third part contains certain recommendations for future action.

PART I -- SHORT SUMMARY OF OBSERVATIONS

The reports can be grouped as follows:
Group 1 -- The most numerous reports indicate the daytime observation of metallic disk-like objects, roughly in diameter ten times their thickness. There is some suggestion that the cross seotion is assymetrical and rather like a turtle shell. Revorts agree that these objects are capable of high acceleration and velocity; they often are sighted in groups, sometimes in formation. Sometimes they flutter.

Group 2 -- The second group consists of reports of lights observed at night. These are also capable of high speed and acceleration. They are less commonly seen in proups. They usually appear to be sharply defined luminous objects.

Group 3 -- The third group consists of reports of various kinds of rockets, in general appearing somewhat like V-2 rockets.

Group 4.- The fourth group contains reports of various devices which, in the writer's opinion, are sounding belloons of unusual shape such as are made by the Genaral Mills Company to Navy contract.

Group 5 -- The fifth proup includes reports of objects in which little credence can be placed.

UNCLASSIFIED

General Remarks

In general, it is noted that few, if any, reports indicate that the observed objeots make any nolse or radio interference. Nor are there many indications of any material affects or physical damage attributable to the observed of jects.

Summary -- PART I

This report will consider mainly the reports of Groups 1 and 2 .

PART II - ON POSSIBLE EXPLANATIONS OF THE REPORTS

Section A -- What can be deduced concerning the nature of an unknown aerial object from a sinsie sighting?

Here, there are two problems: first, how much can be deduced concerning the nature of the objacts from geometrical calculations alone; second, how much more can be deduced if, in addition, it is assumed that the objects obey the laws of nature as we know them.

Concerning the first problam, it can be stated that only ratios of lencths, and pates of change of such ratios, can be accurately determined. Thus, the rance and size of such objects cannot determined; and it is noticeable that reports of size of the observed objects are widely at variance. However, angles, such as the angle subtended by the object, can be observed. Likewise there is Calr agreement among several observers that the diameter on the objects of Group 1 is about ton times their thickness. Although velocity cannot be determined, angular velocity can be, and in particular the flutter frequency could, in principle, be determined.

All that can be concluded about the ranse and size of the objects, from geometrical considerations alone, is: 1) from the fact that estimated sizes vary so widely, the objects were actually elther of different sizes, or more likely, that they were far enough from the observers so that binocular vision produced no stereoscopic effect; this only means that they were farther off than about thirty feet; 2) since objects were seen to disappear behind trees, buildings, clouds, etc., they are large enough to be visible at the ranges of those reoognizable objects.

Now, it is obviously of prime importance to estimate the size and mass of the observed obfects. This may be possible to somo extent if it is permissible to assume that they obey the laws of physics. Since the objects have not been observed

UNCI ASSIFIED

to produce any physical effects, other than the one case in which a cloud was avaporatod along the trajectory, it is not cortain that the laws of mechanics, for irstance, would be sufficient.

But suppose that mechaniosi laws alone are sufficient, then the following example is sufficient proof that at least a length could, in principle, be determined: suppose a simple pendulum were observed suspended in the sky; then after observing its frequency of osoillation, we could deduce from the laws of mechanics its precise length.

This suggests that something could be deduced from the observed fluttering motion of some of the objects of Group 1. Assume that we know the angular freauency and angular amplitude of this fluttering motion (they can be measured in principle from a motion picture). Then for purposes of calculation assume the objoct to be thirty feet in diameter, to be as rigid as a normal eircraft wing of 30 -foot span, to be constructed of material of the optimum weight-strength ratio and to be a structure of most efficient desien. It is now possible to calculate how heavy the object must be merely to remain rigid under the observed ansular motion. Let the calculation be made for a plurality of assumed sizes $1,2,4,8,16,32,64 \ldots$ up to say 200 feet, and let calculated mass be plotted versus assumed size. The non-Inear character of the ourve should indicate an approximate upper limit to the size of the object.

If, in addition, it is assumed that the flutter is due to aerodynamic forces, it is possible that more precise information could be obtained.

The required angular data can probably be extracted from witnesses most reliably by the use of a demonstration model which can be made to oscillate or flutter in a known way.

Summary -- PART II, Section A

Jeometricel oalculations alone cannot yleld the size of objects observed froin a single station; such observation tosether with the assumption that the objects are essontially aircraft, as be used to set reascnable limits of size.

Section B -- The possibility of supporting and propelling a solid object by unusual means.

Since some observers have obviously colored their reports with talk of rays, j ets, beains, space-ships, and the like, it is well to examine what possibilities exist alons these lines. This is also important inview of the conclusions of PARI II, Section A, of this report.

UNCLASSIFIED

or "heathod I-- Propulsion and support by means of "rays"
By "rays" or "boams" are mesnt elthar purely electromagnetic radiation or alse radiation which is largely corpusculse like cothode-rays or cosmic-rays or oyclotronberms.

Now, it is obvious that any device propelled or supported by such moans is fundamentally a rasction device. It is fundemental io the theory of such devices that a given amount of energy is most officiently spent if the momentum thrown back or down is large. This mans that a large mass should be given a small acceleration -- a theorem well understood by helicopter designers.

The beams or rays mertioned do the contrary, a small mass is given a vary high velocity, consequentiy enormous powers, greater than the total worid's power capacity, would be needed to support even the smallest object by such means.

Method II -- D1reot use of Earth's Magnetio Field
One observer (incident 68) noticed a violent motion of a hand-held compass. If we assume from this that the objects producel a magnetio field, comparable with the Earth's ffeld; nemely, 0.1 gauss, and that the observer found thet the objent suntended an ancle q at his position, then the ampere-turns of the reculped electromagnet is given by:
$n i=\frac{30 R}{\theta^{2}}$ where R is the range of the object.
For ingtance, if R is cie kilometer and the objoct is 10 meters in diameter, then $n 1 \neq 1$ blilion arpere-turns.

Now, if the object were actually only 10 meters away and were correspondingly smaller; namely, 10 cm in diameter, it would still require 10 million ampere-turns.

These cicures are a littie in excess of what can be convenientiy done on the ground. They make it seem unlikely that the effect was actually observed.

Now, the Farth's macnetic 1 ield wouli react on such a ma onet to produce not only a torque but also a force. This force depends not directiy on the Earth's fleld intensity but on its irregulerity or gradient. This force is obviously minute since the ohance in fleld over a distance of 10 meters (assumed alameter of the object) is soarcely measureable, moreover the gradiont is not predictable but chaiges due to jocsl ore deposits. Thus, even if the effect were large enouch to use, it wouli still be unreliable and unpredictable.

UNCLASSIFIED

Method III -- Support of an electrically charged objact by oqusing 't to move transverse to the Earth's magnetic field

A positively charged body moving froy west to east, or a negatively charged body moving from East to West will experience an upward force due to the Earth's magnetic field.

A sphere 10 meters diameter moving at a speed of one kilometer/second would experience an upward force of one pound at the equator if charged to a potential of 5×10^{12} volts. This is obviously ridiculous.

Section D -- The anti gravity shield

It has been proposed, by various writers, perhaps first by H. G. Wells, that it might be possible to construct a means of stielding a massive body from the influence of gravity. Such an object would then float. Recently, there appeared in the press a notice that a prominent economist has offered to support research on such an enterprise.

Obviously, conservation of enerzy demands that considerable enerey be given the supported object in order to place it on the shield. However, this amount of eneray is in no way prohibitive, and furthermore it can be gotten back when the object lands.

Aside fron the fact that we have no suggestions as to how such a device is to be made, the various theories of general relativity all agree in assuming that gravitational force and force due to acceleration are indistinguishable, and from this assumption the theorles predict certa n effects which are in fact observed. The assumption, therefore, is probably correct, and a corollary of it is essentially that only by means of an acceleration can gravity be counteracted. This, we can successfully do for instance by making an artificial satellite, but this presumably is not what has been obsarved.

Sumnary -- PART II, Section B

Several unorthodox means of supporting or propeling a solid object have been considered, all are impracticable. This finding lends credence to the tentative proposed assumption of Part II, that the objects are supported and propelled by some normal means, or else that they are not solids. No discussion of the type of Part II, Section 3, can, in principle, of course, be complete.

> Section C -- Possible causes for the reports.

Glassification I -- Natural terrestrial phenomens

1. The observations may be tue to some effect such as

UNCLASSIFIED

ball 11 Thtining. The writer has no suggestions on this essentielly meteorologicel subject.
2. The objects may be some kind or animel.

Even in the celebrated case of incident 172 where the light was chased by a P51 for half an hour and which was reported by the pilot to be intelligently directed, we can make this remark. For considering that an intelligence capable of making so remarkable ievice would not be likely to pley around in so idie a manner as describad by the pilot.

In this connection, it would be well to examine if some of the 11 ghts observed at night were not fire-flies.
3. The observed objects may be hallucinatory or psychological in origin. It is of prime importance to study this possibility bocause we can learn from it something of the character of the population: its response under attack; and also something about the reliability of visual observation.

One would like to assume that the positions held by many of the reported observers guarantee their observations. Unfortunately, there were many reports of curious phenomena by pilots during the war -- the incident of the fire-ball fighters comes to mind. Further, mariners have been reporting seaserpents for bundreds of years yet no one has yet produced a photograph.

It would be interesting to tabulate the responses to see how reliable were the reports on the Japanese balloons during the war. There we hed a phenomenon proven to be real.

It is interesting that the reports swiftly reach a maximum frequency during the end of June 1947 and then slowly taper off. We can assume that this is actually an indication of how rany objects were astually about, or, nuite differently, we can take th's frenuency curve as indicating something about mass psycholory.

This point can be tested. Suppose the population is momentarily excited; how does the frequency of reports vary with time? A study of crank letters received after the recent publicity given to the satellite program should give the required frequency distribution.

It is probably necessary but certainly not suffioient that the unidentified-object curve an the crank-letter curve should be similar in order for the flying disks to be classed as hallucinations.

UNCIASSIFIED

A large-scale experiment was maie at the time of Orson Welles' "Martian" broadosst. Some records of this must persist in newspaper files.

Classification II -- Man-made terrestrial phenomena

1. The objects mey be Russian ircreft. If this were so, then the considerations of Sections A and B indicate that we would have plenty to worry about. It is the author's opinion that only an accidental discovery of a deprepe of novelty never before achieved could suffice to explain such devices. It is loubtful whether a potential enemy would arouse our curiosity in so idle a fashion.

Classification III -- Extra terrestrial objects

1. Meteors: It is noteworthy that the British physicist Iovell writing in "Physics Today" mentions the raiar discovery of a new daytime meteorlte stream which reached its maximum during June 1947. The reported objects lose little of their interest, however, if they are of meteoritic origin.
2. Animals: Althouvh the objects as described act more like animals than anything else, there are few reliable reports on extra-terrestrial animals.
3. Space Ships: The following considerations pertain:
a. If there is an extra terrestrial civilization which can make such objects as are reported then it is most probable that its development is far in advance of ours. This argument can be supported on probability arguments alone without recourse to astronomical hypotheses.
b. Such a civilization might observe that on Earth we now have atomic bombs and are fast developing rockets. In view of the past history of mankind, they should be alarmed. We should, therefore, expect at this time above all to behold such visitations.

Since the acts of mankind most easily observed from a distance are A-bomb explosions we should expect some relation to obtain between the time of A-bomb explosions, the time at which the space ships are seen, and the time required for such ships to arrive from and return to home-base.

PARI III -- RECOMKENDATIONS

1. The file shoula be continued.
2. A meteorologist should compute the approximate energy

UNCLASSIFIED

reauired to evaporate as much cloud as shown in the incident 26 photographs. Together with an aerodynamicist he should examine whether a meteorite of unusual shape could move as observed.
3. The calculations suggested in Part II, Section A, should be estimated by an aerodynamicist with such changes as his more detailed knowledge may suggest.
4. The mass-psychology studies outlined in Part II, Section C, Classification I 3 should be carried out by a competent staff of statisticians and mass-psychologists.
5. Interviewing agents should carry objects or moving pictures for comparison with reporter's memories. These devices should be properly designed by a psychologist experienced in problems pertaining to aircraft and desig of air-craft-control equipment so that he shall heve some grasp of what it is that is to be found out. If the Air Force has reason to be seriously interested in these reports, it should take immediate steps to interrogate the reporters more precisely.
6. A person sikilled in the optics of the eye and of the atrosphere should investigate the particular point that several reports agree in describing the objects as being about tentimes as wide as they are thick; the point being to see if there is a plurality of actual shapes which appear so, under conditions approaching limiting resolution or detectable contrast.

APPMMDIX "D"

Bricadier General Putt
United States Air Force Director of Research and Development Office, Deputy Chief of Staff, Materiel Washington 25, D. C.

Dear General Putt:

Please refor to your letter of 18 November 1948 relative to the "flying object" Nover collbohm's reply dated 24 (b) of the reply, Nir. Collbohm promised (among other things) to send a disoussion of the "special design and performance charaoteristics that are belleved to distinguish space ships."

This present letter gives, in very general terms, a description of the likelihood of a visit from other worlds as an engineering problem and some points rejarding the use of space vehicles as compared with descriptions of the flying objects. Mr. Collbohm will deliver copies to Colonel McCoy at Wright-Patterson Air Base during the RAND briefing there within the next few days.

A good beginning is to discuss some possible places of origin of visiting space ships. Astronomers are largely in agreement that only one membor of the Solar system (besides Earth) can support higher forms of iffe. It is the planet Mars. Even Mars appears ailite desolate and inhospitable so that a race would be more occupied with survival than we are on Earth. Reference l gives adequate descriptions of conditions on the various planets and satellites. A quotation from Ref. I (p. 229) can well be included here.
"Whether intelligent beings exist to appreciate these splendors of the Martian landscape is pure speculation. If we have correctly reconstructed the history of Mars, there is little reason to belleve that the life processes may not have followed a course similar to terrestrial evolution. With this assumption, three general possibllities emerge. Intelligent beings may have protected themselves against the excessively slow loss of atmosphere, oxygen and water, by constructing homes and cities\% with the physical conditions scientifically con-

[^0]
UNCLASSIFIED

trolled. As a second possibility, evolution may have developed a being who can withstand the rigors of the Martian climate. Or the race may have perished.
"These possibilitios have been sufficiently expanded in the pseudo-scientific literature to make further amplification superfluous. However, there may exist some interesting restrictions to the anatomy and physiology of a Martian. Rarity of the atinosphere, for example, may require a completely altered respiratory system for warm-blooded creatures. If the atmospheric pressure is much below the vapor pressure of water at the body temperature of the individual, the process of breathing with our type of lungs becomes impossible. On Nars the critical pressure for a body temperature of 98.09 . occurs when a column of the atmosphere contains one sixth the mass of a similar column on the Earth. For a body temperature of 770 F . the critical mass ratio is reduced to about one twelfth, and at $60^{\circ} \mathrm{F}$. to about one twenty-fourth. These critical values are of the sama order as the values estimated for the Martian atmosphere. Accordingly the anatomy and physlology of a Martian may be radically different from ours - but this is all conjecture.
"We do not know the origin of IIfe, ever on the Earth. We are unable to observe any signs of intelligent ilfe on Mars. The reader may form ris own opinion. If he believes that the ife force is universal ani that intellicent beines may have once developed on Mars, he has only to imagine that they persisted for countless generations in a rare atmosphere which is nearly devold of oxygen and water, and on a planet where the nishts are much colder than our arctic winters. The existence of intelligent ife on Nars is not impossible but it is completely unproven."

It is not too unreasonable to go a step further and consider Venus as a possible home for intelligent life. The atmosphere, to be sure, apparently consists mostly of carbon dioxide with deep clouds of formeldehyde droplets, and there seems to be little or no water. Yet living organisms might develop in chemical environments that are strange to us: the vegetable kinfdom, for example, operates on a fundamentally different energy cycle from Man. Bodies might be constructed and operated with ilfferent chemicals and other physical principles than any of the creatures we know. One thing is evident: fishes, insects, nnd manmals all manufacture within their own bodies complex chemical compounds that do not exist as minersis. To this extent, iffe is self-sufficient and might well adapt itself to any environment within certain limits of temperature (and size of creature).

Venus has two handicaps pelative to Mars. Her mass, and gravity, are naarly as large as for the Earth (Mars is smaller) and ber

n

UNIDENTIFIED AERTAL OBJECIS PROJECT "SIGN"

L. H. Truettner
A. B. Deyarmond

(Project No. $\mathrm{xS}-3 \mathrm{O}_{4}$)

Approved by:

For the Comnanding General:

USA. Clingornen \cos USAF

1. 2. ivcooy, cop nol, ushap

Chief, Intellisence Department
Published by
Technical Intelligence Division
Intelligence Department, Air Materiel Command Wright-Patterson Air Force Base, Dayton, Ohio

Release Date: February 1949
cloudy atmosphere would discourage astronomy, hence space travel. The remaining Solsr planets are such poor prospects that they can be 1 mored.

In the next few paragraphs, we sha: speak of Mars. It should be understood that most of the remarks apply equally well to Venus.

Various people have suggested that an aivanced race may have been visiting Earth from Mars or Venus at intervals from decades to eons. Reports of objeots in the sky seem to have been handed down through the generations. If this were true, a race of such knowledge and power would have established some form of direct contact. They could see that Earth's inhabitants would be helpless to do interplanetary rarm. If afrald of carrying diseases home, they would at least try to commicate. It is hard to believe that ony techrically accomplished race would come here, claunt its ability in mystorious ways and then simply go away. fo this writer, lon-time practice of space travel implies advanced engineering and science, wespons and ways of thinking. It is not plausible (as many fiction writers do) to mix space ships with broadswords. Furthermore, a race which had enough initiative to explore amons the planets would hardly be too timid to follow through when the job was accomplished.

One other hypothesis needs to be discussed. It is tolat the Marticns ve kept a lon-term routine watch on Earth and have been alarmed by the sight of our A-jomb shots as evidence that we are warlike and on the threshold of space travel. (Venus is eliminated here because her cloudy atmosphere would make such a survey impractical). The first flying objects were sighted in the Sprin of 1947, after a total 5 atomic bomb explosions, i.e., Alamozordo, Hirostima, Nagasaki, Crossroads A and Crossroads 3 . Of these, the first two were in positions to be seen fron Mars, the third was very doubtful (at the edge of Farth's disc in daylight) and the last two were on the wrong side of Earth. It is likely that Vartian astronomers, with their thin atimcsphere, could build telogcopes big enough to see A-honb explosions on Farth, even though we were 165 and 153 million miles away, respectively, on the Alamozordo and Hiroshima dates. The weakest point in the hypothesis is that a continual, defensive watch of Earth for long periods on time (perhaps thousands of years) would be dull sport, and no race that even remotely resembled Man would undertake it. We haven't even consldered the ldes for Venus or Kars, for example.

The sum and substance of this ilsoussion is that if Martians are now visiting us without contact, it can be assumed that they reve just recently succeeded in space travel and that thelr civilization would be practically abreast on ours.

UNCLASSIFIED

The chance that lartians, unier such widely divergent conditions, would have a civilization resamblire our own is extremely remote. It is particularly unlikely that their civilization would be within a half century of our own state of advancement. Yet in the last 50 years we have just started to use aircraft and in the next 50 years we will almost certalnly start exploring space.

Thus it appears that space travel from another point within the Solar system is possible but very unlikely. Odds are at least a thoussnd-to-one rgainst it.

This leqves the totality of planets of other stars in the Galaxy as possible sources. Many modern astronomers belleve that planets are fairly normal and logical affairs in the life history of a star (rather than cataclysmic oddities) so that many planets can be expected to existin space.

To narrow the field a little, some loose specifications can be written for the star about which the home base planet would revolve. Let us say that the star should bear a family resemblance to the Sun, which is a member of the so-called "mainsequence" of stars, i.e.. we eliminate white dwarfs, red giants and supergiants. For a description on these types, see reference 2 , chapter 5. There is no specific reason for making this assumption except to simplify ilscussion: we are still considering the majority of stars.

Next, true varlable stars can be eliminated, since conditions on a planet attacted to a variable star would Pluctuate too wildly to permit life. The numbor of stars deleted here is negligibly small. Reference 3 , pajes 76 and 85 indicate that the most common types are too bright to be in nearby space unnoticed. Lastiy, we shall omit binary or multiple stars, since the conditions for stable planet orbits aro obscure in such cases. About a third o the stars are eliminated by this restriction.

As our best known sample of space we can take a volume with the Sun at the center and a radius of 16 lizht years. A compilation of the 47 known stars, including the Sun, within this volume is given in reference 4, paces 52 to 57. Bliminating according to the sbove discussion: Three are white dwarfs, el cht binaries account for 13 stars and two trinaries account for 6 more. The remalnder, 22 stars, can be considered as elielble for habitable planets.

UNCLASSIFIED

Assuming the above volume to be typical, the contents of any other reascnable volume can be found by varying the number of stars proportionately with the volume, or with the radius cubed, $S_{e}=22 x$ $\left(\frac{r}{16}\right)^{3}$, where S_{θ} is number of eligible stars and r is the radius of the volume in light years. (This formula stould only be used for radil greater than 16 light years. For smaller samples we call for a recount. For example, only one known eligible star other than the Sun lies within eizht light years).

Having an estimate of the number of useable stars, it is now necessary to make a guess as to the number of habitable planets. We have only one observed sample, the Solar System, and the guess must be made with low confidence, since intelligent iffemay not be randomly distributed at all.

The Sun has nine planets, arranged in a fairly regular progression of orbits (see reference 1, Appendix I) that lends credence to theories that many stars have planets. Of the nine planets, (one, the Barth) is completely suitable for life. Two more (in adjacent orbits) are near misses: Mars has extremely rigorous living conditions and Venus has an unsuitable atmosphere. Viewed very broadly indeed, this could mean that each star would have a series of planets so spaced that one, or possibly two, would have correct temperatuces, correct moisture content and atmosphere to support civilized life. Let us assume that there is, on the average, one habitable planet per eligible star.

There is no line of ressoning or evidence which can indicate whether iffe will actually develop on a planet where the conditions are suitable. Here again, the Earth may be unlque rather than a random sample. This writer can only infect some personal intuition into the discussion with the view that ilfe is not unique on Earth, or even the random result of a low probability, but is practically inefitable in the right conditions. This is to say, the number of inhabited planets is equid to those that are suitable!

One more item needs to be considered. Knowing nothing at all about other races, we must assume that Man is average as to technical advancement, environmental difficulties, etc. That is, one half of the other planets are bahind us and have no space travel and the other half are shead and have various levels of space travel. We can thus imagine that in our sample volume there are ll races of beings who have begun space explorations. The formula on page 3 above now becomes

$$
\mathrm{R}=11 \times\left(\frac{\mathrm{r}}{16}\right)^{3}
$$

where R is the number of races exploring space in a spherical volume of radius $\mathrm{r}>16$ light years.

Arguments like those applied to Martians on pase 2 need not apply to races from other star systems. Instead of being a first port of call, Earth would possibly be reachod only after many centuries of development and exploration with space ships, so that a visiting race could be expected to be far in advance of Nan.

To summarize the discussion thus far: the chante of space travelers existing at planets attached to neighboring stars is very much greater than the change of space-traveling Martians. The one can be viewed almost as a certainty (if the assumptions are accepted), wheress the other is very silght indeed.

In obder to estimate the relative changes that visitors from Mars or star X could come to the Earth and act like "flying objects", some discussion of characteristics of space ships is necessary.

To handle the simple case first, a trip from Mars to Earth should be feasible using a rocket-powered vehicle. Onee here, the rocket would probably use more fuel in slowing down for a landing than it did in initial takeoff, due to Earth's higher gravitational force.

A rough estimate of one-way performance can be found by adding the so-called "escape velocity" of Mars to that of the Earth plus the total energy change (kinetic and potential) used in changing from one planetary orbit to the other. These are 3.1, 7.0, and 10.7 miles per second, respectively, \&ing a total required performance of 20.8 miles per second for a oneway flight. Barring a suicide mission, the vehicle would have to land and replenish or else carry a 100% reserve for the trip home.

Let us assume the Martians have developed a nuclear, hydrogenpropelled vehicle (the most efficient basic arrangement that has been conceived here on Earth) which uses half its stages to get here and the remaining stages to return to Mars, thus completing a round trip without refueling, but slowing down enough in our atmosphere to be easily visible (i.e., prectically making a landing). Sinceit is nuclear powered, gas temperatures will be limited to the maximum operating temperatures that materials can withstand (heat must transfer from the pile to the gas, so cooling can't be used in the pile). The highest melting point compound of uranium which we can find is uranium carbide. It has a melting point of $4560^{\circ} \mathrm{R}$. Assume the Martians are capable of realizing a gas temperature of $45000 \mathrm{R}\left(=2500^{\circ} \mathrm{K}\right)$, and that they also have alloys which make high motor pressures (3000 psi) economicel. Then the specific impulse will be $I=1035$ seconds and the exhaust velocity will be $c=33,400 \mathrm{ft} / \mathrm{sec}$ (reference 5). Calculation shows that using a single stage for each leg of the fourney would require a fuel/gross weight ratio of0. 96 (for each stage) too high to be practical. Using two stages ach way (four altogether) brings the required fuel ratio down to 0.81 , a balue that can be realized.

If, by the development of strong alloys, the basic weight could be kept to 10% of the total weight for each stage, a residue of 9% could be used for payload. A four stage vehicle would then have a gross weight $\frac{(100)^{3}}{9}=15,000$ times as great as the payload: thus, if the payload were 2,000 pounds, the gross weight would be 30 milli , pounds at initial takeoff (Earth pounds).

Of course, if we allow the Martians to refuel, the vehicle could have only two stagesk and the gross welght would be only $\left(\frac{100}{9}\right)^{2}=123$ times the payload, 1.e., 250,000 pounds. This would require bringing electrolytic and refrigerating equipment and sitting at the South Pole long enough to extract fuel for the hourney home, slnce they have not asked us for supplies. Our oceans (electrolysis to make H_{2}) would be obvious to Martian telescopes and they might conceivabiy follow such a plan, particularly if they came here without foreknowledge that Earth has a civilization.

Requirements for a trip from a planet attached to some star other than the sun can be calculated in a similar manner. Here the energy (or velocity) required has mcre parts: (a) escape from the plenet (b) escape from the star (c) enough velocity to traverse a few light years of space in reasonable time (d) deceler ation toward the $\operatorname{Sun}(e)$ deceleration toward the Earth. The nearest "elletible" star is an object called Wolf 359 (see reference 4, p 52), at a distance of 8.011 ght years. It is small, having an absolute magnitude of 16.6 and is typical of "red dwarfs" which make up more than half of the eligible populations. By comparison with similar stars of known mass, this star is estimated to have a mass roughly 0.03 as great as the sun. Since the star has a low luminosity (being much cooler and smaller than the Sun) a habitable planet would need to be in a small orbit for warmth.

Of the chances of energy required as listed in the preceding paragraph, item (c), velocity to traverse intervening space, is so large as to make the others completely neglibible. If the visitors were long lived and could "hibernate" for 80 years both coming and going, then $1 / 10$ the speed of lisht would be required, i.e., the enormous velocity of 18,000 miles per second. This is completely beyond the reach of any predicted level of rocket propulsion.

If a race were far enough advanced to make really efficient use of nuclear energy, then a large part of the mass of the nuclear material might be converted into jet energy. We have no idea how to do this, in fact reforenco 6 indicates that the materials requird to withstand the temperatures, etc., may be fundamentally unattainable. Let us start from a jet-propellant-to-gross-weight ratio of a.75. If the total amount of expended material (nuclear plus propellent) can be 0.85 of the gross welifht, then the nuclear material expended can be 0.10 of the gross. Using an efficiency of 0.5 for converting nuclear energy to jet energy and neglecting relativistic mass corrections, then a rocket velocity of half the velocity of light could be attained. This would mean a transit time of 16 years each way from the star Wolf 359 , or longer times from other ellzible stars. To try to go much faster would mean spending much energy on relativistic change in mass and therefore operating at lowered efficiency.

[^1]To summarize this section of the discussion, it can be said that a trip from Mars is a logical engineering advam over our own present technical status, but that a trip from another star system requires improvements of propulsion that we have not yet conveived.

Combining the efforts of all the science-fiction writers, we could conjure up a large number of hypothetical methods of transportation like gravity shields, space overdrives, teleports, simulators, energy beams and so on. Conceivably, among the myriads of stellar systems in the Galaxy, one or more races have discovered methods of travel that would be fantastic by our standards. Yet the larger the volume of space that must be included in order to strengthen this possibility, the lower will be the chance that the race involved would ever find the earth. The Galaxy has a diameter of roughly 100,000 light years and a total mass about two hundred billion times that of the Sun (reference 4). Other galaxies have been photographed and estimated in numbers of several hundred million (reference 2, p. 4) at distances up to billions of light years (reference 7, p 158)。 The number of stars in the known universe is enormous, yet so are the distances involved. A super-race (unless they occur frecuently) would not be likely to stumble upon Planet III of Sol, a fifth-magnitude star in the rarefied outskirts of the Gelaxy.

A description of the probable operating characteristics of space ships must be based on the assumption that they will be rockets, since this is the only form of propulsion that we know will function in outer space. Below are listed a few of the significant factors of rocketry in relation to the "flying objects".
(a) Maneuverability. A special-purpose rocket can be made as maneuverable as we like, with very high accelerations either along or normal to the flight path. However, a high-performance space ship will cortainly be large and unwieldy and could hardly be desianed to maneuver frivolously around in the Earth's atmosphere. The only economical maneuver would be to come down and go up more or less vertically.
(b) Fuel reserves. It is hard to see how a single rocket ship could carry enough extra fuel to make repeated descents into the Earth's atmosphere. The large number of flying objects reported in quick succession could only mean a large number of visiting oraft.

Two possibilities thus are presented. First, a number of space ships could have come as a group. This would only be done if fulldress contact were to be established. Second, numerous small craft might descen from a mother ship which coasts around the Earth in a satellite orbit. But this could mean that the smaller craft would have to be rockets of satillite performance, and to contain them the mother ship would have to be truly enormous.
(c) Appearance. A vertically descending rocket mi ght well appear as a luminous disk to a person directly below. Observers at a distance, however, would surely identify the rocket for what it really is. There would probably be more reports of oblique views than of endion views. Of course, the shape need not be typical of our rockets; yet the exhaust should be easy to see.

One or two additional general remarks may be relevant to space ships as "flying objects". The distribution of flying objects is peculiar, to say the least. As far as this writer knows, all incidents have occurred within the United States, whereas visiting spacemen could be expected to scatter their visits more or less uniformly over the globe. The small area covered indicates strongly that the flyinc objects are of Earthly origin, whether physical or psychological.

The lack of purpose apparent in the various episodes is also puzsling. Only one motive can be assigned; that the space-men are "feeling out" our defenses without wanting to be belligerent. If so, they must have been aatisfied long ago that we can't catch them. It seems fruitless for them to keep repeating the same experiment.

Conclusions:

Although visits from outer space are believed to be possible, they are believed to be very improbable. In particular, the actions attributed to the "flying objects" reported during 1947 and 1948 seem inconsistent with the requirements for space travel.

Very truly yours,
J. E. Lipp

Missiles Division

JEL: sp
References

1. "Earth, Moon and Plenets", by F.L. Whipple, Harvard Books on Astronomy, Blakiston, 1941.
2. "Atoms, Stars and Nebulae", by Goldbers, Alter; Harvard Books on Astronomy, Blakiston, 1943.
3. "The Story of Variable Stars", by Campbell and Jacchis, Harvard Books on Astronomy, Blakiston, 1945.
4. "The M1lky Way", by Bok and Bok, Harvard Books on Astronomy, Blakiston 1941.
5. Calculated Properties of Hydrogen Propellant at Hi gh Temper atures. Data provided to RAND by Dr. Altman, then at JPL. Unpublished.
6. "The Use of Atomic Power for Rockets", by R. Serber, Appendix IV Second Quarterly Report, RA-15004, Douglas Aircraft Co., Inc., Project Rand.
7. "Galaxies", by Shapley, Harlow; Harvard Books on Astronomy, Blakiston 1943.

$$
\begin{aligned}
& \text { Arzitimedil Col anrret://s/4i44 } \\
& 0 \text { 0es } 46
\end{aligned}
$$

Baoto: Let fr Ho, AY: Nirleht Fid, Dayion, C. 24 sept 47. Subj: "Ylylas: Sacers"

Ratif Gyo of Inclourea in the Flles

Ayerimecos
1081 n 4

201 Comanalng Oonoral, Sir Vatemel Cownnl, richt Mold, Degton, Ohso ATCA: 2SNAD-2B

TSMAD-2B/ACL:eoc 24 Soptembar 1947 TSN. $10-2 B$

2. In complianco with Con ral licDonald's telephone conversation, this date, to Colonol H . N. McCoy, T-2, Hq. ANC, attached desigrated LD-2. Because of patent ried, "Loedding Fiying Disc", ted that a record be kept of all pights involved, it is requeswitnessing mith signatures and dates dirons reviewine this drawing by

號 has servod its purpose so that it can bo to this offica mon it Office Hq. inf for official record.

Arcofi Establishmont, Tochnical iso report prepared by the Royal the liorton tatilesa afrerast. Which is considered simpificant in rellating referonces aro invited spactivo thinking and accorplishments toward the Horten brothers perSaucor" caso:
a. Paze 5, Paragraph 4 and 6 .
b. Page 6, Parajraph 1 and 70
c. Pago 26, Paragraph 3 and 10 .
d. Page 27, Paragraph 12.
e. Page 25, Paragraphs 1 through 5 .
f. Page 54, Photograph of Horten "Parabola".

$$
\begin{aligned}
& 43.601210200^{v^{4}} \\
& x^{99} / 0.100
\end{aligned}
$$

ABSTRACT

UNCL ASSIFIED

A descriptive and anslytical study of the unidentified aerial objects, that have been reported both in the United States and from foreign countries, is presented.

Individual cases are desoribed in briof form, as an appendix.
The analytical treatment of the subject is largely of a qualitative and generalized nature. However, detalled analyses and detailed results are presented, whore this procedure is possible and will assist in establishing the validity or tenability of an oversil hypathesis.

Project "Sign" is still largely characterized by the collection of data, without sufficient information to permit dofinite, specific conclusions to be made. No definite evidence is yet available to confirm or disprove the actual existence of unidentified flying objocts as new and unknown types of airoraft. A limited number of the incidents have been identified as known objects.

UNCLASSIFIED

Basic 2tr, dtd 24 Sup 47, to CG, Hq MF, Wash, subj: "F2ying Disc"
g. Page 69, The Horten VIII.
h. Pagos 71 and 72, Fhotographs of tho Horten IX Vereions. i. Pago 74, Drawing of the "Parabolan. This document should also bo returned when it has eerved its intonded
purpose.
L. 4 人452.1 dated 9 June 1947 , Indicates that 1800 alpilatity at+nche, Moscon. USSR, basod on the Horten VIII dosien (six enino put, directiy or indirectiy of 231 feot and a cross woisht ($31 x$ ongine pusher, hoving a ming spread pounds) are boing built for bomber serodimately thirtv-three thousand : iowever, is jot propolled, reference report use. Tho Rucsian version, V-32291-8.
5. The T-2 report aGerman Fyyng kings Dosimod by $X 095$
 if doaired.

FOR THE COMONDING MGERAL:

```
3ncls:
    2. Drawing
    2. RNER Toch Note, NERO 1703
    3. T-2 Rpt,No.F-SU-1110-10
```

```
                                    H. M. NeCOY
                                    Colonel, ifr Corps
                                    Deputy Commanding Cenerai
                                    Intelligence (T-2)
```

\cos

hEADQUARTERS

AIR MATERIEL COMMAND
$\operatorname{menTN} / \pi \mathrm{me} / 1 . \mathrm{r} / 6-1.100$ wRtont mito, Dayton, outo

IKtiIN

SUMJECT: Fly1ng DLacs

TO:

```
Chsef of Staff
United Statea A1r Force
#lachirgton 25, D. C.
ATTENTION: Director, Research - Peveloprent
    dajor General L. C. Craigle
```

1. Confirming the recent conversation of the undersigned with Yajor Coneral L。C. Craigie, 9 Decomber 19L7, at tached as listed bolot aro coples of the roports from this Hwadquarters concerning Fiying Discs.
2. Coments of Headquarters, Ar Force on theso lotters have nover beon recelved by this Command. Continued and recont reports from quallifed observors concerning this phenomonon etill makes this matter one of concern to Headquarlers, Hr Kateriel Comand. Intelilgenco Department of this Comand is continuing tho collection and analysis of all avallable reports.

FCR THE COMMNDING GENERALs

$$
\begin{aligned}
& \text { H. M. KCCOY } \\
& \text { Colonel, USAF } \\
& \text { Chief of Intellisence }
\end{aligned}
$$

```
    2 Attach:
    CC Itr to CG, MN, dtd 23 sopt 47
        suby ntucc opinion Concerning
        "Flyiag Discs"n
    cc ltr to CG, ANF, dtd 21. Sept L4
        subj "F2JIng Discs"
```

DOWNC"•品D
DECLANil: : ... 12 YEARS.
DOD DIR 5200.10

UNCLASSIFIED
c

```
0
Y
```

HADDQUATTME
AIA MATZRI 2 L COMIAS\%

```
TSMAD-2B/ACI/ame
wright Fld, Dayton,0.
24 3ept }2
```



```
"My\ng Saucers"
```

Commetng Gonerm, Amy Mr Fores, keshington $35,0 . C$. 2FTEI AO/AS-2. It Col Oarrott

It is renuested that this offico be furntehed all havaluble (informblon concerning an alloged "Elying Sucer" flifht siphting made by a ractar atalion in Sapan. This incident van montioned by Dr. Charles Carroll turing a conference in Brif Con Schalgon's ofeleo atiended by Kr . A.C. Loedeline, T-2 represeatative, on 5 . Sopterbir 2947.
20. 27. c chu. NIDIMG OETG JUL:

```
/s/ M.2.0011
/t/ H.l:.NoCor
    Colonel, Alr Corps
    Doputy Corrawing Qeneral
    Intelligencs %-2
```

DOWNGRADED AT 3 YFAR INTTERVATS: DECLASSIFIED AFTLZR 12 YEARS. DOD DIR 5200.10

HEADQUARTERS

AIR MATERIEL COMMAND

18 Nor 47
TLINA－23／ACL／anh

SUBJECT：
Plytig Lisca

30：

$$
\begin{aligned}
& \text { Chiof of Staff } \\
& \text { Thited Statos Alr Porco } \\
& \text { ihalilagton 25, D. C。 } \\
& \text { ANDNTIOM: OCficm. Dirnctor of Into221genco } \\
& \text { Lo Colonsl Goorgo Chrrebt, Jro }
\end{aligned}
$$

1．Tha Inclas of momapyor
thom end coment。 Tha Lnoident foplyce are submittod for your informa＝ Jourmal＂on $22^{\prime \prime}$ Huvctiber 1447，and مhould in Soattle appoared in tho＂Dayton

2．The atisry by Lionsl Shapiro ragardiaC var mapons davalopedin Spein ovicibnt2y was printad in a numbor of loaling novopapera thsouzhout tain sasontlel al monta for suoh alh entlolo will the dependents upor oer－ fuads，matoris？a，experi－nntal ti．agod ímportant developoonts，auoh as
 Tha Gormon solertists at this ilg indioata suppling by forman solentists． from Cor any are workinc in Spaia，sind those no frportant scientiatia ero not lnom to thom．

3．If possible，therefore，an affort ahoutd bo anda to obtain mamos， Gualificatiana，or any information that might lolp to identify the allogod

So \＆bile：statunant was rade in e reoent intelilgence roport from

losa ranga al chting raportad aholli roincor a more dotailed observation ch．n what was reportod，which also sugenets a follom－up．

5．It is further requasted that this ofMge bo adviaed as to procrose ba 125 rade on the plotting of all Clying disc incidonta to dato，parilou－ lamy in liorth inorioas．It wre underatood that ir．Carroll vas goins to A．a ；than inoidents，but no furthor word was reooivod regording thia of－

Th． 1. Mcrox
Colonnl，hilr Corpa
Qiepure Intalligea0e
UNCLASSIFIED

ONCLASSIFIED it Col Uraaiman/sa 72364

AFIN: (39) 20t 1, 1,

Mq AAF, Wanhingeon 25, DC, 23 Snptenbod 1947
So: Genorindint Gonern, Air Fraining Comand, Barksdale F1e2d, Sigrovaport, Lomiaderra.
(Xisnemttod horemith in compliance with innte conemicathon

BO COMALND OF GitigAL SPAATZ:

$$
X 201-0
$$

A. A. GIZKISON, Brige Cion., U. S. A., Leputy, the Ar Inspootor.
© arcl $30 /$

1. $1 . \mathrm{c}$
2. (nciind) Siostlrang of (102. K2ndoll (in Gued.)

DOWNGRADED AT 3 YEAR INTERVALS: DECLASSIFIED AFTER 12 YEARS.

10
UNCLASSIFIED DOD DIR 5200.10

cort

UNCLASSIFIEB

ABIRCO

SunJicts loported algheings of Fiying Disce.
To : Cccounding Osnorel
Atr Ifatoriol Gemend Finsolto ELeld, Dayion, criso

1. Its errenged verioliy with Lir. Loolling, Inoloond io the comploto 1120 molntainod by this ofites on reported eighting of Mying Dises.
2. This yilo is forvaried ao that photontato mey bo mada in orker to provido your Cocrand with a dapleate eot of theso afghtings.
3. Whan photostating this eceersal for your purposo, it whlu bo approcinted if cro extra sot is ando for thia çsico and roturnod et tho sano tize tho ordgincis are roturnod.
 Rogusemento Divinion, Collection Lranoh.

IX QUMAND OF OAMBRAL SPATZZ

Meadouatrens AIR MATEREL COWMAND
 6eommentes ition dis bed

 cogmaNB, AYTAH1ION rollowitha omice byurntir nely

sUPECT:

Mo Optinton ebrecming Gathe biecot

70:

$$
\begin{aligned}
& \text { Comanding Ocreral } \\
& \text { Anuy Air Forces } \\
& \text { Whitheton acio mo to } \\
& \text { Mrevicias brige General Georee Schulgen } \\
& \text { AC/AS-2 }
\end{aligned}
$$

1. As requested by $A C / A S-2$ therenis presented belor the considered opintion of this Comand conceraing the somballed "Flring niscse. This
 prolimimary atudiea by Formonnch of T-2 and Atrexaft laboratory, Engtncot ing Division $\mathrm{T}=3$, this opinion mas arrived at in a confmence between
 Chief of Sngineering Diviaton, aricistinghireraft, Power Plent and Propaller Leberatories of Papincering fiviecor $\mathrm{T}=3$.
2. It is the opintion thation

or stathitionsh

Cased by matural phonomena, suah as me eors. 4 a . of the incidents may be
case
 ratea of climb, maneiverability (particuiarly in roll), and action mifich
 oraft and radir, lenc bofl er it the posalbility that some of the objecto are controlled either marually, aitopa-fealiy or remotely.

Co The apparent counci apseriftion of the objects is ae foluones-
(1) Votallic or 14eht reflecting gurfece
DOWNGRADED AT 3 YEAR INTERVALS:
(2) Absence of trati, except. in a four ins tancea wheh the object apparertik. was. operating undur high performance sondttions.
(3) Circular or ellipttial in shape, flat on bottom and domed ari top.
(4) Several reports of well kept formation filighto varying from thres to nine objecto.
(5) Normilly no assecleted sound, except in three inatainces a mabatantial rumbling roar was noted.
(6) Level flight speede nomilly above 300 mots areentimeted.
fo It 18 poendible within the present 0.80 tononledse - provided extensive detailed development is undertaken -- to construct a piloted atroraft wilich has tine gemaral desoription of the object in sulparagraph (e) above which woutd be capable of an-epproximate range of 7000 milea at subsonic speeds.
8. div developments in this country "long the lines indicated would be extromely expensive, tie consuming and at the considerable wr pense of current profects and therefore, if direoted, should be cot up indepandently of oxleting yojects.
ho Due constderation met bo given the follorings-
(1). The possibility that these objects are of comentie origin - the product of some high securlty project not known to $A \omega / A 8=$ or thts Comrad.
(2) The Mack of physical ovidance in the chape of erach recovered exhibite which would undeniably prove the eadstence of thess ebfects.
(3) Tha posatbility that some foroign nation hes a fore of propulsion posaibly nuelear, which is outside of our domestic krowl adge

DOWNGRADED AT 3 YTin INTRRVALS: DECLASSIFIED AFTER 12 YEARS.
 DOD DIR 5200.10

3. Tt In risom Mrotediathetion

 Whe preliminay report to be formarded within 15 deys of recelpt of

Baste Itr if CO; MYC, IF to CO, MF, Wahe DoCo enbj eMY Opintion Oone cerning Mrying Disee
 Batica dovelope. a conlete interohange of date chonla be effceted.
 it intiting a peceific directive ang mill comtime the inventio cation dithin its current resources in ordor to more alocely define the meture of the phemo maions Dotedied Emeontial monente of Inferfelten WH11 be formonted 1 mediately for transmittal tha chamele.

Y. F. IMIITO

Kioutenant Genaral, DeSclo Con milins

摕CLACSIFIED

5ブM 2

80．3：7i ming mete

ter

 Cule

 Anolewnes 1.

L．c．crame

2ibjer Gemore1，5．3．Atr Row Dhtecter of potenreh and Devरlogneb

Project "Sign" was initiated by the Technical Intelligence Division, Air Materiel Command, and assigned Project Number XS-304, 22 January 1948, under authority of a letter from the Doputy Chief of Staff, Materiel, USAF. This letter is referenced C / s, USAF, zo December 1947, subject "Flying Disks."

Assistance in analyzing the reported observations has been provided by other Divisions of Air Materiel Command in accordance with Technical Instructions TI-2185, Addendum No. 3, dtd 11 February 1948, subject: "Project Sign" - Evaluation of Unidentified Flying Objects".

Analysis of the reported incidents, as an effort to identify astro-physical phenomena, is being accomplished by Ohio State University under contract with Air Materiel Command.

A special study has been initiated with the Rand Project in accordance with Air Corps Letter No. 80-10 dtd 21 July 1948 to present information that would serve to evaluate the remote possibility that some of the observed objects may be space ships or satelifte vehicles.

Members of the Scientific Advisory Board to the Chief of Staff, USAF, have also supplied their services in a consulting capacity.

UNCLA BIFIED

6 Det 46

"Mring Saucero:
nit co of ? mencon th he3 41800

An incent

 AYCH: TSMD-2B

 DECLASSIFIED AFTER 12 YEARS. DOD DIR 5200.10 UNCLASSIFIED
 DOD DIR 5200.10

UNCLASSIFIED

5BIR-00

$A 1$ Moterin contind
Whine mint, Duten, Chse Esention 8.20

 मring Dices.

3. Ithon motectating thie meterin 800 your miveo, it =113
 Ct tho chm ty, the orfanale one intumets

 nothenes Dirleten, Corection gronch.
rix orvinio on eiman spurys

0
$\sqrt{2-20}+2$

\cdots

UNCLASSIFIED

TSmanwa/lictioces
2h crathoswerelth

subresi whing mise

201
comandtring noers
Ary Mr Forces Whehington $25, D_{0}, C$.
Aryin $10 / 1$ eno
Mafor Gomel Georco MoDom 1 d
1.

 Atnosing with bo kopt of all parbons reviowing thit is roquesf)haing with si matures and dates directiy on tho dre dratine by
 hit borwd ito propoges should bo roturnod to thita office whon the Offtce Hqo $t s$ for offigial reggid.
3. ruclosed harem th 5 o? I

 opactive thinking and accomplioh in relating the Horten bro indted mucer" cases
a. Pace 5, Paragraph 4 and 6 .
b. Page 6, Paragraph 1 and 7.
c) Page 26, Paragrath 3 and 10 .
do Page 27, Parearaph 12.
-. Page 23, Paragrephs 1 through 5 .
f. Page 54, Photograph of Horton "Pernbole.

DOWNGRADED AT 3 YEAR INTERV DECLASSIFIED AFTER 12 YEAR
UNCLASSTIFIED

8. Page 69, The Horten VI'II.
ho Pages 71 and 72 , thotogriths of thio Horton my voratonas 1. Page 74, Drawing of the "Parabolen.
the document should aleo be retarned when it has sorved ite intended purpores.
$x 45<2.1$

 of 131 foet and a groes misht of oix onglhe puchor, having a wing apread poundo) are being built for bomber aqpuadmately thirtymethreo thousand
 $V=32291-8$.
5. The T-2 report mooran Rying Nings Dosimed yo yo 95 If desived $110-3$, also incl osed hprenith, may be meined Hoxtiningethe
mar mis comandmo ofisintif

3 Incle:
2. Drawin:

20 R13 Toch Noto, $1 \geq 101703$
3. T-2 Rpt, No. $\mathrm{F}-\mathrm{SU}-1110-10$

```
```

H. Y. Mecor

```
```

H. Y. Mecor
Colonal, air C
Colonal, air C
Dopulty ecincming Comerat
Dopulty ecincming Comerat
Thtolligence (r-2)

```
```

 Thtolligence (r-2)
    ```
```

 DOWNGRADED AT 3 YEAR INTFRV ATS:
 DECLASSIFIED AFTER 12 YEABS.
 DOD DIR 5200.10

UNCLASSIFIED

HEADOUARTEXS
AR MATERIEL COMM ND
sunert Fying Mace

trony/ma/re/6-1100 mavem mes, Camom cwo

roi
Chief of staff
United States Mr Forco
Wahingtan 25 , Do.0.
ATFBNFION: Directer, Reecarch \& Dowlopent
major General Lo Ce Craige

1. Conftrining the recent conversatich of the underatoned with Majce Goncral L. C. Graigle, 9 Dećmber 1947, at tached an 11eted belch ard copites of the reporte from thic Headywertere ecneerning Mying Mere.
2. Consents of Headquarters, Ar Force on these 1otters haw newr been recelved by this Commend. Continucd and recent roporte from quatified obsezvers concerning this phenomon otill mkes thin anttor one of concern to Headquariers, Mr Meteriel Comand. Intolltcurce Departaent of the Co.and is continuing the collection and amalysis of all available reports.

FOi THE COMMYDTNG OBNDPAT.

2 Attach:

ec 1tr to CB, MF, dtd $23 \cdot$ Sopt 47 aubj Hyc opini on Concerning "Fiying Disen"
ce 1 tr to $\mathrm{CO}, \mathrm{M} 2$, dtd 24 Sept 47 aubj "Mying Disce"

H. M. YeCOY
Colonel, USN:
Ghtor. of Theolisigone

> DOWEGRADED AT 3 YEAR INTERVALS:
> DUCEABSIFIED AFTER 12 YEARS, DO3 DR 5200.10
c

Mrinc Smacro

10 io roquented that this office be farmighed an/freginglo

 soptomber 1947.

$1 / \mathrm{N}, \mathrm{z}, \operatorname{cos11}$
E.M.Hecor
colonot, Mr corpo
Doputy Commminc Comeral
Intolil geneo $5=8$

- DOWNGRADED AT 3 YEAR INTERYALS: DECLASSIFIED AFTER 12 YEARS. DQD DIR 5200.10

TsDry/aw $/ 1$ c/6-h100

Subsecti Are Opinion Concornting "hying Diece"
T0t
Conmpiting conoral
Arny Ar Forces
Felington 25, D, C_{5}
$\begin{aligned} \text { Arrintioir } & \text { Brige Ocioral George schml gos } \\ & \text { Acfis. }\end{aligned}$ 40/AS-2

1. As requestod by $A C / 15-2$ there in. prosented bolce the conoldored opinion of this Comand concoming the so-collcd enring Digeope inte optation 18 based on interrogation report data furntehad by $10 / 15-2$ and proltafnary atudios by poraonnel of T-2 and Aireraft Laboratory, Engineos 1ng Divi of on T-3. Thio opinion was arrimi it in a cenforence bothenen pergennel from the 11 r Inctitute of Tochnoloas, Intollicunce pe2, office, Chlof of Enginearing Diviation, and the Mrerart, Power Pant and propller Laboratories of Engineoring Division T-3.
2. Tt is the opintion thats
Q. The phescmon raported is something real and hot visioanary
be There are ofjects probably approximating the shape of a diac, of such apprectable size as to appear to be as la reates man-ando
c. There is a poisibility that som of the incidents ny be caused by natural phoncmana, such as meteors.
d. The roported operating characteriaties such as oxtrome rates of climb, manouverability (particularly in roll), and action which anot be considored orasiw when sichted or contected by fiytondly arr are controlled 10 br boliof to the posaibility that oco of the objocta are controlled oither manually, automatically or remotely.
Q. The apperent common description of the objecte 18 an fetlomes (1) Metallic or light reflecting aurfice.

JNCLASSIFIED

 Conaing myydes ctacs". obsect apgenengty wat cpernthmonthe hath pardor
(3) Cironiar or aikption in chape, fint on botteon and 3 domed on rerens
 Gron thrie to ntre absedtat
 - aubotantial rubtinif roar the moved.

 pereormph (a) mbow which would bo caprable of an eppyoztmape rence of 7000 thes at oubsonic opmedr.

Qe. An dovolopmente th thin eometry nions the 1 thaci indi eate
 pence of curront prosecte and therefort, If direeted, choeld be cet up imb copendently of exiating projecte.
h. The conilderation mus be xiwn tho follominge-
(1) Tho possib111ty thet thow obdeote oro of dogente orkin - the product of com high securt ty prosece not known to $A \cdot / A 5-2$ or this wo.end.
(d) thin laek of phevaleal ovidenice in the she of arach recovarad oxhlatto whlah would untintabty prow ohe extetence of these objocte.
(3) The poantbili ity that nose foreikn nakion hime a foin of propmiotion pomathy nuoges, whach is outatio of our domontic monledso.

DECLASSIFIED AFTER 12 YEARS.
DOD DIR 5200.10
3. It is recominded that: -

 thla mateor to includo the proparatsion of capdinabla to tho Arivy, Nav, and portinant data which will then hio Mr Force 3etentific Advacory Oroup, Ataico smerg Comainsion, WC, and the RMiP and wart to be formarded within 15 daya of rocelpt of mele a prilatnary roport to e foranter owny 30 dayd as the invests: Uite ate and a dotethed res ASSIFIED
UNCLASI

U-29582


```
W. F. тimina
Kouthent corme
crimetim
```

This report is written to present the status of work being accomplished on Project "Sign", to summarize the data collected on sightings of unicentified aerial objects, to roview the methods and reasoning applied in the evaluation of the data, and to presant the results so far obtained from the study of data available.

It is not expected that this report cen present a final estimate of the situation regarding all the incidents neported. The data is still being studied by specialists in the fields of astrophysics and psychology, and further information is being collected to enable personnel evaluating project "Sion" incidents to determine possible explanations of some of the sightings. However, the report will furnish information on the present state of the investigation to staff personnel in this headquarters and in hiaher echelons, and to others who are required to assess the possibility of a threat to national security presented by the sighting of such large numberg of unidentified flying objects.

MPADOUARTELS

AR MATERIEL COMMAND

TSIND-25/ACi/amb
whem mats, sarrow, owo
$2 ;$ NOV 1947
ror Ghiof of staff
United states Mr Porce
Thinting toin $25, \mathrm{D}$ o Co
Aivimions Orfice, Director, of Intolitgence Lt Colonel George Gorrett, Jr.

Roference lotter, aubject as above, dated 18 Novombor 1e47, it is requented that immediate action be taken to appropriately mark or stenp
 thon mubor is as followi Une4898s

FOR THB COMMNDIMG GENYOL:
H. M, Yocoy

Colonel, TSNF
'Ghlof of Intolligonco

$\rightarrow 0$

colvepaitt

$-\frac{-3}{8}$

HEADOUARTERS

AIR MATERIEL COMMAND
iv ment Xevits sotu
 vilort 아 A A min or
 TSMAD-2B

Flythe Disen.

TO: Chiof of Starf
Onited staten Mr Foreo
Werhtestom $25, \mathrm{D}: \mathrm{C}$ 。
 Lt Colonol Georgo Garrott, Uro

TSYLD-2B/ACL/amb
whiow MHB, BAYTOM, owno

$$
\begin{aligned}
& \text { sunnct: }
\end{aligned}
$$

1. The inolced lewmpapor olippingo aro aubittod for your informe thon and coment. The inoldont reported in soettio appenind in the Deyton Jourmal" on 12 Movember 1947, and chould be follemed up if posetblo.
2. The atory by Lionel Shapiro rogardi mg war moppone dowlopet inSpata ovidontly was printed in a number of loadinc, mowopapor, the oumout the country, the olgniflcance of this artiole will bo deposedert upon oertin oceamtial ol cmonta for ouch alloged important derolopeonto, ouoh an fundy, matorinla, experimontel teating fachlitsen, and tophmologicel Whow how". The latter is aupposcd to bo muppliod by Gorme selentiots. The German uoiontiati at this Hq indioato that no important acf entinte
from Gormany aro working in Spain, and thoand are not lonow to them.
3. If poanible, thereforg, in offort chould be ado to obenin mine, qualificatt ame, or ay informition that might holp to idontify the alloged Goran soiontiats working in Spin.
4. A butof ntritoment wat ede in a mont intolliguco roport to son
 The olose range II chting reported ahould rondor a more dotilled obeorvithem then what wee reportod, whioh algo muecento a follewip.
 botag ande on the plotking of all mying dige ingidonts to doto. pertectet larly in Morth maorice, It mo undorateod that br. Carroll me cothe to plot theo incidenta; but no firther word wee reeelfed regertens thit of

if. M, Mecoy
Golomel, Aipn Gorpe

TITIS Project Grudgo
PROJSCT XS-304
AtMHORTMY Mq, USAP, Depuity Chief of Staff, Materiel, Mashinton 25, D. C. letter, dated 30 Dec: 1947.

PRTORTMY 2太
SBCIRITY Restricted
PROTBCN BMCHNSMR . . . It H. WV. Smith
PURPOSS To collect, collate, evaluate and interfret data obtained relative to the sighting of unidentified flying objects in the atmosphere which may have importance on the national security, and to control and effect distribution of all ob jective information as requested to interested governmental agencies and contractors.

ESTMMATED GOMPLETION. . . Continuous
FRTITS CONCTRACTOR None
THIS MONFH: The Profect Grudge Technical Report incorporating results of study has been completed and submitted to Fq USAF for coordination.

The number of reported sightings continue to exceed the normal monthly average.

Tinder a contemplated revision of policy, Project Grudge would investigate only those inoidents in which realistic technical applications are clearly indicated. (RSSTRICTSD)
on 14 Nov 57 I called Miss Soddy, who is Chief, Administrative Reference Branch, Mail and Records Management Division, Air Adj Gen Office, Hq USAF (extension 74835). AFCAG-22.

Miss Snoddy is trying to locate letter from C/S, USAF, dated 30 Dec 44, subject: "Flying Discs".

Corrected die from- 1944 to

$$
1947.5 t
$$

Map chat) Distich
\qquad
 (rip, curer is nov sol Its wa sing is. Cage lesion

$$
6 / 15 / 58
$$

ame lepnt, sih 49, "nmidentfuer CaridColjecte Crgent sian"
S-11750 Serut
Quient min acier t
the to wood En a the to wool fn a congressione sreetmy

HEADQUARTETS AIR MATERIEL COSCUAND Wright-Patterson Air Foros Base Dayton, Ohio

мciuxo-3/ans/ra Jan 51949

| MCIAZO

SUBJECT: Projoot "SION"
TO: Chiof, Air Neather Servioo. Andrews Alr Force Base, Washington 25, D. C. ATTH: DSS

1. Projeot "SIGN" is resporisible for the colleotion, investigation and interigretation of data relative to sighting of unidentiried flyirg objoots. Attachod Inoident Summariss 1 thru 172 from the files of Projeot "SIGN" are formarded for study and recommenciation as to which of the inoidents may be eliminatod es balloons roloased on routine eymoptio ascents by the Air Fioather Sorvioe, the Favy Aorolegioal Sorvice or the inited States Weather Bureau. Ith summaries attaohed my be retained in your hoadquarters for working and reference purposes..
2. The Air Weathor Sorvioe is the only agonoy of its type that has bson asked to assist in the acoomyishmont of Projeot "SIGN" oxcept that the United States Fioathor Bureau has provided information on ball lightning. Rescarch projeots in whioh balloons aro used and whioh are conduoted or aponsored by the Army, Navy or United states Air Foroe are cheoked by tho Intelligence Departmont of this Conmend. Theso oheoks areusually made direot from the Projeat " SION " Offioe, ZCIAXO-3. These ehooks are distinot from the ohook of synoptic balloon flights made by weather service stations of the ilr Force, the liavy and the Dopartmont of Commerce. (U. S.. Ifenther Bureau) requested of Air lieather servioe.
3. It is the opinion of this offico. that tho bolow istod inoidents are those having the greatest possibility of being balloons. This list does not eliminate the possibility that many of the remaining Incidents aro balloons.

| 2 | 24 | 50 | 91 | 113 | 155 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 25 | 52 | 92 | 115 | 156 |
| 1 | 28 | 72 | 96 | 126 | 157 |
| 11 | 30 | 73 | 104 | 141 | 159 |
| 14 | 31 | 62 | 105 | 148 | 163 |
| 16 | 32 | 87 | $107,8,9$ | 151 | 167 |
| 22 | 33 | 89 | $112(500122)$ | 154 | 169 |
| 23 | 40 | | | | |

Hi Als, Chiof, Alr Woather Servioo, Washington 25. D. C. Subjs Projaot "SI Gur"
4. Tho form used in interrogating witnosses to sightinge is inolosed as a matter of interost. Conment as to possible improvement of the "Essential Elemonts of Inforastion" in regard to routino eyrioptio balloon flichte is invitod.
5. It Is requested that correspondence be forwarded to the Commanding General, Hoadquarters, Air Ifateriel Cormand, attention 2CIAXO-3.

FOR THE COMHAFDING CENERAL:

```
2 Inole:
    Summarios 1-172 inol
    "MEI*
2 Inole:
Sumarios 1-172 inọ1 "MEI"
Copies furnished:
AFOIR, HQ. USAF
Capt Irakowski, Goophysios Lab Major Kodis, McReisp
Colorvel Heal, HCLABS
```

18 for W. R. Clingerman Col ${ }_{6}$ USAF

Dr HYNEX'S EVALUATIONS EXTRACTED FROM PROJECT GRUDEE REPORT.

HiCILEATT THDEX

1. Astronomioal

a. Eich probnbility:
¥26, 27, $30,31,32,33,34,48,49,59,60,66,69,70,94$, $90,96,97,98,101,102,103,104,116,119,132,136,140$, 147, 148, 158, 174, 184, 185, 187, 197, 203, 204, 208, 216. 219.238.
b. rair or low probability:
tis, $20,23,24,28,35,35,46,50,63,67,86,82,93,100$, 112, 120, 121, 129, 130, 144, 153, 16". 165., 167, 175, 192. 199, 202. 205, 220, 230, 240.
2. Von-astrononioal tut suggestive of other explanations
A. Balloons or ordinary airoralt :
\#3, 11, 22, 41, 42, 53, 54, 73, 81, 83, 91, 92, 113, 114, 115, 126, 131, 138, 141, 145, 155, 156, 157, 159, 160, 161, 163. 169, 171, 173, 178, 180, 182, 188, 190, 194, 195, 196, 193. 200, 201, 209, 21u, 217, 222, 235, 237, 239.
b. Fookots, flares or falling bodies:
$44,5,6,7,8,9,12,13,14,15,16,25,56,65,78,106,107$, 108, 109, 133, 170, 211, 218.
c. Kisoollaneous (reflections, auroral otreamers, birds, oto.): ث59, $89,123,124,128,146,164,181,189,214,22,231,234$.
S. Ion-astronomioal, with no oxplanation ovidont
a. Laok of oviderice preoludes explanations
$438,44,45,47,55,57,72,86,87,88,90,99,110,117,118$, 125, 127, 137, 139, 149, 150, 177, 179, 191, 206, 212, 213, 229, 232, 253.
b. Evidence offored sugeests no explanation:
\#1, $2,10,17,21,29,37,40,51,62,58,61,62,64,68,71$. $75,76,77,79,84,105,111,122,135,151,152,154,162$. 168, 172, 176, 183, 186, 193, 207, 215, 223, 224, 225, 226. 227, 236, 241, 242, 243, 244, 134.

SUMMARY

The results of the study reviewed in this report, are based on data derived from reports of 243 domestic and thirty (30) foreign incidents. Data from these incidents is being summarized, reproduced and distributed to agencies and individuals cooperating in the analysis and evaluation. Distribution has so far been accomplished on the summaries of incidents and moce are in process of reproduction at this time. 172

A check list of itams to be noted in reporting incidents has been prepared and distributed to government investipative agencios. The data obtained in reports recelved are studied in relation to many fictors such as guided missile research activity, weather and other atmospheric sounding balloon launchings, commerdial and military aircraft flights, flights of migratory birds, and other considerations, to detormine possible explanations for sightires.

Based on the possibility that the objects are really unidentified and unconventional types of aircraft a technical analyais is made of some of the reports to determine the aerodynamic, propulsion, and control features that would be required for the objoct to perform as described in the reports. The objects sighted have been grouped into four olassifications acoording to configuration:

1. Flying disks, 1.^., very low aspect ratio alreraft.
2. Torpedo or cigar shaped bodies with no wings or ins visible in filght.
3. Spherical or balloon-shaped obj-cts.
4. Bells of 11 ght

The first thrde groups are capablo of flisht by aorodynamic or aerostatic means and can be propelind and controlled by methods known to aeronautical designers. The fourth appoars to have no physical form attached, but the means of support may not have been seen by the observer.

Approximately ${ }^{\text {Twenty }}$ tan percent of the incidents have been identified as conventional aorial objects to the satisfaction of personnel assigned to Projnot "Sign" in this Command. It is expocted that a study of the incidents in relation to weather and other atmospheric sounding belloons will provide solutions for an equivalent number. Verbsl statemente by an astro-physicist at Ohio State University and by psychologists of the Aero-Medical Laboratory of this Command, indicate the possibility of solving an appreciable number of the sightings as a result of their investigations. Elimination of incidents with reasonably satisfactory explanations will darify the problom presented by a project of this nature.

The possibility thint some of the incidents may represint technical developments farin advance of knowledse avallable to -ngineers and scientists of this country has been considered. No facts are available to personnel at this Command that will permit an objective assessment of this possibility. All information so far presented on the poseible existence of space ships from another planet or of alreraft propelled by an advanced type of atomic power plant have been largely conjecture. Based on experionce with nuclear power plant research in this country, the existence on Earth of such engines of small enough size and weight to have powered the objects described is hichly improbable.

Reports of unidentified flying objects are not peculiar to the present time. In, "The Books of Charles Port" by Tiffeny Taylor, published in 1941 by Henry Holte \& Co., Now York, similar phenomena are described as having been sizhted during past centuries. In the last war, numerous sightings of "balls of fira" in the alr were reported by bomber crews.

[^0]:

[^1]: * Actually three staces. On the trlp to Earth, the first stage would be filled with fuel, the second stage would contain partial fuel, the third would be empty. The first stage would be thrown away during flight. On the trip back to Mars, the second and third stages would be filled with fuel. The gross weisht of the initial vehicle would be of the order of magnitude of a two-stage rocket.

